
Chapter 8

[193]

The Need for a Logical Data Model
A logical model is very helpful for the following reasons:

It helps in understanding project requirements: A logical data model
translates business requirements into simple entity relationship models,
making it easy to identify and understand the business logic. Sometimes
business requirements can be complex, making it difficult for the developer
to understand a system's internal logic. Using a logical data model helps to
create a visual representation of the system, from a high level.
It helps in creating the actual database: The logical data model is the
blueprint of the actual physical database that needs to be created for the
application. Most beginner developers start creating physical tables in the
database while starting to work on a project, which can lead to problems,
as it might not be possible to foresee all of the physical tables and the
relationships between them right at the start of the project. A logical data
model helps in mitigating risks by laying out the entity relationships and
attributes before the actual physical data modeling starts.
It is database independent: The same logical data model can be used
for different databases, as a logical model is independent of the physical
database. This saves time when developing applications targeting multiple
databases, which helps to reduce development time and cost.

The Domain Model Versus the Logical
Data Model
Many developers are unclear of the difference between the domain model and the
logical data model, sometimes mistaking one with the other. Even though a logical
model might look similar to a domain model in terms of depicting primary entities
of a system, there are fundamental differences between the two. A logical data model
is more focused on the structure of the data in the entities and on the relationships
between different entities, whereas a domain model is focused on encapsulating
the entities from an object-oriented perspective. So a logical data model is purely
relational in nature, but an object domain model is richer, depicting inheritance,
associations, aggregations, and so on, between the different entities involved.

•

•

•

Database Design

[194]

In our object model, there will be some entities that will be the same as in the logical
data model, whereas some might not be present in the logical data model at all. For
example, if we create a parent class for a Customer called Person, then in the object
model, the entities would look like this:

Customer:Person Person

- LastVisited
- CustomerStatus

- ID
- FirstName
- LastName

Here, the Customer class inherits the Person class, and both are different kinds of
objects in the domain model. Even though we can say Customer is a type of Person,
but not every Person is a Customer. So both of these entities need to be depicted
separately in the domain model.

But in the logical data model, we cannot depict inheritance or any other
object-oriented feature. In this case, both the Person and the Customer classes
can be persisted in the same table in the database. So there would be a single
entity for both of these in the logical data model as shown here:

Person

- ID
- FirstName
- LastName
- LastVisited
- CustomerStatus

How, then, do we identify Persons from Customers? One simple way is to add
a Boolean attribute: IsCustomer. For all Person objects who are Customers, this
attribute would be true. This is one simple example to show that the relational data
model is very different from an object-oriented domain model.

Physical Data Model
Once we have defined the logical data model, we can then create a physical data
model for our application. A logical model is closer to the business model whereas
a physical model actually mirrors the actual database. In short, the physical data
model is the logical data model with:

